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ible substrate induces a curvature of the substrate. Usually the substrate is orders
of magnitude thicker than the film, leading to small and purely elastic deformation of the substrate. In this
case, the Stoney equation yields the stress in the film from the measured curvature of the substrate. The
Stoney equation contains thickness of film and substrate and the elastic properties of the substrate. Typically
the elastic properties of the substrate are specified by E (Young's modulus), and ν (Poisson's ratio). E and ν
provide a valid description for elastically isotropic substrates, e.g. polycrystalline steel strips, as used by
Stoney in 1909.
Today the Stoney equation is still used for relating substrate curvature to film stress. However, in the majority
of thin film stress measurements by means of substrate curvature, Si wafers are used as the substrate. Silicon
wafers are cut from single crystals and are thereby elastically anisotropic. In the present paper, a modified
form of the Stoney equation, well known for elastic isotropic substrates, is derived for Si(001) and Si(111)
wafers, using the elastic stiffness constants of silicon, cij, instead of the orientation averaged values E and ν,
which do not have a meaning for elastically anisotropic single crystal materials.
Curvature measurements of thin films on Si(001) and Si(111) wafers are presented. The difference in film-
stress-induced curvature of Si(001) and Si(111) wafers is discussed.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Thin films on a substrate are usually in a stressed state. A
convenient method to study stress in thin films is to deposit these
films on a flat substrate and observe the curvature of the substrate due
8), doi:10.1016/j.tsf.2008.07.014
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to the stress in the film. The Stoney equation relates the curvature of
the substrate to the stress in the film. A first requirement for appli-
cation of the Stoney equation is that the substrate is thick compared to
the thickness of the film, but still thin enough that it bends due to the
stress in the film. A second requirement for application of the Stoney
equation is that the film is in a state of plane stress, meaning that in
the plane of the film the stress is independent of direction, or in tensor
notation:

ttσ f
¼

σ f 0 0
0 σ f 0
0 0 0

0
@

1
A: ð1Þ

The formula relating the curvature of the substrate to the stress in the
film is known as the Stoney equation. Various versions of the Stoney
equation exist for various types of substrates. For elastic isotropic sub-
strates, e.g. steel strips or glass slides, the Stoney equation reads [1–3]:

σ f tf ¼
Esh2

6 1−�sð ÞR ; ð2Þ

with σf the in-plane stress component in the film, tf the thickness of
the film, Es Young's modulus of the substrate, νs Poisson's ratio for the
substrate, h the thickness of the substrate and R the radius of
curvature of the initial flat substrate after deposition of the film.

For elastically anisotropic substrates, e.g. single crystal silicon
wafers, versions of the Stoney equation also exist. For Si(001) wafers,
the Stoney equation reads [2]:

σ f tf ¼
h2

6 sSi11 þ sSi12
� �

R
; ð3Þ

with s11
Si and s12

Si elements of the compliance tensor of silicon. The
factor 1/ (s11Si +s12Si ) is called the biaxial modulus (M) of Si(001). The
numerical value is:

MSi
001ð Þ ¼

1
sSi11 þ sSi12

¼ 1:803 1ð Þ � 1011 Pa: ð4Þ

For Si(111) wafers the Stoney equation reads [2]:

σ f tf ¼
6

4sSi11 þ 8sSi12 þ sSi44

 !
h2

6R
: ð5Þ

The factor 6/(4s11Si +8s12Si +s44Si ) is called the biaxialmodulus of Si(111).
The numerical value is:

MSi
111 ¼ 6

4sSi11 þ 8sSi12 þ sSi44
¼ 2:291 1ð Þ � 1011 Pa: ð6Þ

The values of s11Si , s12Si , and s44
Si are presented in Section 3, below.

At present the substrates of choice for stress measurements by
substrate deformation are almost exclusively silicon wafers. In fact,
this is so common that the technique is known as the “wafer curvature
method”. It is therefore strange that while the majority of the
substrates used are Si(001) wafers, requiring Eq. (3), most authors use
Eq. (2) to analyze their results. We suspect that the application of the
inappropriate formula stems from two causes:

⁎ The initial work on stress in thin films was done on isotropic
substrates [4,5]

⁎ The correct formulas were presented without derivation [2], and
because of their conceived complexity not appealing to a non-
mechanical engineering audience.
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In the present paper we will first give a historical overview of the
work on stress measurements by observation of deformation of the
substrate curvature and then present a derivation of Eqs. (3) and (5) for
single crystal silicon wafers. Moreover, in Appendix A, we will
demonstrate that Eqs. (3) and (5) reduce toEq. (2) for isotropic substrates.

To convince the reader of the validity of Eqs. (3) and (5), we
deposited two identical series of three tungsten films each on Si(001)
and Si(111) substrates. Films identical in stress and thickness induce a
different curvature in Si(001) and Si(111) wafers according to Eqs. (3)
and (5), showing the need for these equations for silicon wafers
instead of Eq. (2). We hope that henceforth Eq. (3) will be used to
analyze stress in film on Si(001) wafers, since E and ν have no
meaning for an elastically anisotropic material like silicon.

2. Historical overview

In 1909 Stoney published his seminal paper “The Tension of
Metallic Films Deposited by Electrolysis” [4]. In that paper he derived
an expression for the curvature of a steel strip due to the stress in a
metallic coating applied to one side of the strip. This expression, like
all subsequent versions of what has become known as the Stoney
equation, was arrived at by requiring two equilibrium conditions. For a
beam oriented along the x1 direction, that bends in the x3 direction,
these conditions can be expressed as [6]:

F ¼ Rσ11dA ¼ 0 ð7Þ

M ¼ Rσ11x3dA ¼ 0 ð8Þ

with dA an element perpendicular to the x1 direction. Eq. (7) states
that the sum, F, of the longitudinal forces within the strip is zero, i.e.,
that the internal compressive forces are equal to the internal tensile
forces. Eq. (8) states that at equilibrium the internal bending moment
M of the strip is zero about any axis. (The bendingmomentMmust not
be confused with the biaxial modulus Mhkl). Using these conditions it
is straightforward algebra to arrive at the expression published by
Stoney:

σ f tf ¼
Esh2

6R
: ð9Þ

Stoneyerroneously assumed a uniaxial stress in thefilm instead of a
biaxial stress. Even though the strip is considerably longer than wide,
still the width of the strip is very much larger than the thickness of the
film; therefore the stress in the film is bi-axial. Due to this oversight
Stoney characterized the elastic behavior of the strip by Es instead of
Es / (1−νs). Eq. (9) differs from Eq. (2) by a factor 1/ (1−νs). This factor
stems from thedifference between a uniaxial stress and a biaxial stress.

A steel strip consists of many grains. Therefore any elastic aniso-
tropy is averaged out and the use of Eq. (2) is justified even though the
individual grains in the strip may be elastically anisotropic. Such an
averaging over randomly oriented crystals yields aggregated values
for E and ν [7].

The first requirement in the derivation of the Stoney equation
(Eqs. (2), (3), and (5)) is that the film is thin compared to the sub-
strate. This requirement allows one to describe themechanical action
of the film on the substrate by a single quantity: the force per unit
width (F/w) [8]. The left hand side of Eqs. (2), (3), and (5) is called the
force per unit width; it is expressed in units N/m. For the case that the
stress is not constant over the film thickness, the force per unit width
is not the product of stress and film thickness, but the integral of the
stress in the film over the thickness of the film [9]. Since for solution
of the equilibrium Eqs. (7) and (8) the film is replaced by an “action”
on one side of the substrate, the elastic properties of the film do not
enter Eqs. (2), (3), and (5).
8), doi:10.1016/j.tsf.2008.07.014
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Fig. 1. A sketch of a 100 mm siliconwafer. The flat designates the crystal direction [01
_
1],

both for Si(001) as well as for Si(111) wafers. For Si(001) wafers, [001] is normal to the
wafer. For Si(111) wafers, [111] is perpendicular to the wafer.
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Another consequence of the requirement that the film is thin
compared to the substrate is that no distinction has to bemade between
deposition on a clamped substrate and a substrate that is free to bend.
Assume deposition of a stressed film on a clamped substrate. After
deposition, the substrate is released and will assume a curvature,
thereby changing the strain of the film and lowering the absolute value
of the stress in the film. Since the film is thin compared to the substrate,
the curvature, and hence the strain and change in stress in the filmwill
be small. In Appendix B this is elaborated.

Of course one can also solve Eqs. (7) and (8) for systems consisting
of films and substrates with comparable thickness. This was done for a
number of systems in a 1949 paper by Brenner and Senderoff [6]. In
that article, however, it was still not realized that the stress in a film is
typically biaxial and not uniaxial.

During the 1970's, Hoffman and Thornton studied stress in sputter
deposited films. They analyzed their data by observing the curvature
of glass slides by interferometry. In 1977 [5], they published a formula
for the non-uniform curvature of a glass slide, caused by a non-
uniform stress in the film. Eq. (2) can straightforwardly be derived
from their formula.

In 1979, a derivation for the curvature of a steel strip due to a
stressedfilmwas presented by Perakh [10]. Also from this result, Eq. (2)
can be obtained by straightforward algebra.

To our knowledge, the first occurrence of the Stoney equation in the
formof Eq. (2)was in 1987, in a paper by Flinn, Gardner andNix [1]. Only
two years later Nix presented Eqs. (2), (3) and (5) [2] for isotropic
substrates, Si(001) wafers and Si(111) wafers, respectively. The biaxial
moduli of Si(001) and Si(111), that enter in Eqs. (3) and (5) had been
published in 1972 by Brantley [11]. It is probably because the derivations
of Eq. (3) and (5) were not given in the paper by Nix [2], that these
equations have not caught on in the thin films community.

In the 1990's, it was realized that a round plate covered on one side
with a stressed film will deform in an axially symmetric manner only
for a small force per unit width. For a larger force per unit width, a
cylindrical deformation is the energetically preferred solution [12–16].
The mode of deformation is determined by a parameter A [16]:

A ¼ σ f tf
D2

h3
; ð10Þ

with D the diameter of the plate. For a silicon wafer with D /h≥50, the
critical value is Ac=680 GPa. For Ab0.2 Ac the Stoney equation is
correct within 10%. For 0.2 AcbAbAc, the deformation of the wafer will
be axially symmetric, but the curvature at the center of the plate will
be significantly lower than the value predicted by the Stoney Equation.
Vice versa, unguarded application of the Stoney equation in this
regime will lead to an underestimation of the stress up to a factor of
two. Finally, for ANAc, bifurcation will occur with a large curvature in
one direction and almost no curvature in the perpendicular direction.
For 100 mm Si wafers, the requirement Ab0.2 Ac leads to maximum
force per unit width for 90% accuracy of the Stoney Equation of:

σ f tf
� �

max¼ 1:9 GPa � μm: ð11Þ

With the exception of Thornton and Hoffman [5], in all papers
reviewed so far the stress in the films has been assumed to be plane
stress: σ11=σ22 and all other components of the stress tensor zero. In a
large number of cases, the deposition equipment in which the films
are deposited exhibits anisotropy. This anisotropy may lead to
anisotropy in the microstructure of the film and hence to anisotropy
in the stress. To tackle this problem, Zhao et al. [17] derived equations
for the case where σ11≠σ22.

In recent years, papers are still being published on the Stoney
Equation, be it on the accuracy [18,19] or on special cases, e.g. the case
where the stress in the film is position dependent [20], but more
Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (200
importantly, the equation is used extensively in the study of stresses in
thin films.

3. The Stoney equation for a Si(001) wafer substrate

The substrate of choice for curvature measurements is often a silicon
wafer with (001) orientation. In that case, Eq. (2) is not applicable since
the elastic response of silicon is anisotropic. E and ν are direction de-
pendent for a single crystal. The in-plane stiffness of a silicon (001)wafer
depends on the direction, that is ESi[110]=171 GPa and νSi[110]=0.06
while ESi[100]=130 GPa and νSi[100]=0.28. [21,22]. In Fig. 1 a sketch of a
100mmSiwafer is presented. The flat designates the [11̄0] direction. For
a Si(001) wafer, the [001] direction is normal to the wafer and
the [001] and [010] directions coincide with the x1- and x2-axes. In the
calculations for Si(001) wafers, we will use a coordinate systemwith the
x1- and x2-axis as indicated in Fig. 1 and the x3 axis perpendicular to
the wafer. These directions coincide with the crystallographic axes of
the silicon crystal.

3.1. Constitutive equation

We will derive the Stoney equation based on the constitutive equa-
tion for silicon, i.e. generalized Hooke's law, in tensor notation. Stress
and stain are both tensors of rank two with nine components. Both
tensors, however, are symmetric [23] and therefore each have only six
distinct components. The tensor relating stress to strain has 81 compo-
nents (9×9). Based on symmetry, this number reduces for a cubic crystal
to only threedistinct components [23]. For cubicmaterials, onearrives at

σ11
σ22
σ33
σ23
σ13
σ12

0
BBBBBB@

1
CCCCCCA

¼

c11 c12 c12
c12 c11 c12
c12 c12 c11

c44
c44

c44

0
BBBBBB@

1
CCCCCCA

e11
e22
e33
2e23
2e13
2e12

0
BBBBBB@

1
CCCCCCA
; ð12Þ

where σij are the components of the stress tensor, c11, c12, c44 are the
elastic stiffness constants of silicon and εij are the strains. The values of
c11, c12, and c44 (see Table 1) have been determined in the 1960's
[24,25] and are today still used as a touchstone for first principle
calculations [26]. In this paper, we will drop the designation Si in the
compliances and stiffness coefficients, so instead of cijSi and sij

Si we will
henceforth use cij and sij.

In Eq. (12) the stress components are expressed as a function of the
strain components. It is equally well possible to express the strain
8), doi:10.1016/j.tsf.2008.07.014
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Table 2
Compliance constants of silicon in units of Pa−1, calculated from the experimental values
of the stiffness constants in Table 1

s11 (Pa−1) s12 (Pa−1) s44 (Pa−1)

from Ref. [24] 7.685 10−12 −2.139 10−12 1.256 10−11

from Ref. [25] 7.691 10−12 −2.142 10−12 1.258 10−11

Table 1
Experimental values of the elastic stiffness constants of silicon in units of GPa

c11 (GPa) c12 (GPa) c44 (GPa)

Ref. [24] 165.77 63.92 79.62
Ref. [25] 165.64 63.94 79.51

Fig. 2. The wafer is curved due to the stress in the film. A neutral surface, u0, that is
neither compressed nor expanded is assumed, somewhere in the wafer.
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components in the stress components. In that case one employs the
non-zero elements of the compliance tensor s11, s12, and s44. Following
the equations in ref. [27] it is straightforward to calculate the values of
s11, s12 and s44 from the values c11, c12, and c44. For convenience of the
reader the results are presented in Table 2.

3.2. Kinematics

Due to the stressed film, the siliconwafer will bend. For the case of
a tensile stress in the film, the part of the wafer adjacent to the film
will be contracted and the part of the wafer furthest away from the
film will be elongated. Assume that in the wafer there is a neutral
plane u(0) that is neither expanded nor contracted. The situation is
sketched in Fig. 2. The displacement of a point on the neutral plane
perpendicular to the wafer is denoted by w. The components of the
displacement of a point on the neutral plane in the plane of the wafer
are small compared to w and are set to zero. Furthermore, we assume
that the shape of the silicon wafer can be described by one unique
curvature, hence:

u 0ð Þ
1 ¼ u 0ð Þ

2 ¼ 0; ð13aÞ

u 0ð Þ
3 ¼ w x1; x2ð Þ ¼ ax21 þ ax22: ð13bÞ

The curvature of the sample, κ, and the constant a are related to
the radius of curvature, R, by:

κ ¼ 2a ¼ 1
R
: ð14Þ

In the section on experimental results, it will be shown that for
100 mm diameter wafers the assumption of a unique curvature is
correct for all presented samples within 5%.

Since the wafer plus film are an isolated system, no stresses
perpendicular to the substrate are possible at the surface, and since
the moments are constant over the thickness of the wafer σ13=
σ23=σ33=0 [23,28]. Using Eq. (12), we arrive at:

e13 ¼ 0; ð15aÞ
e23 ¼ 0; ð15bÞ

e33 ¼ −
c12
c11

e11 þ e22ð Þ: ð15cÞ

The relation between strains, εij and the displacement (vector)
field u is [21]:

eij ¼
1
2

Aui

Axj
þ Auj

Axi

� �
: ð16Þ

Combining Eqs. (15a) and (16) yields:

Au1

Ax3
¼ −

Au3

Ax1
: ð17Þ
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From Eq. (17), combined with Eq. (13b), we obtain:

Au1

Ax3
¼ −

Aw
Ax1

: ð18Þ

Integrating Eq. (18) with respect to x3 yields:

u1 ¼ −x3
Aw
Ax1

: ð19Þ

Differentiating Eq. (19) with respect to x1 and x2 yields:

e11 ¼ −x3
A2w
Ax21

ð20Þ

and

e12 ¼ −x3
A2w

Ax1Ax2
: ð21Þ

Starting from Eqs. (15b) and (16), we arrive at

e22 ¼ −x3
A2w
Ax23

: ð22Þ

From Eqs. (15c), (20), and (22), we obtain:

e33 ¼ x3
c12
c11

A2w
Ax21

þ A2w
Ax22

 !
: ð23Þ

All strains in the silicon sample are now known:

e11
e22
e33
2e23
2e13
2e12

0
BBBBBB@

1
CCCCCCA

¼

−2x3a
−2x3a
4x3a

c12
c11

0
0
0

0
BBBBBBB@

1
CCCCCCCA
: ð24Þ

From Eq. (12) we find σ11, σ22, and σ12. Summing up, the stresses
in the silicon are:

σ11
σ22
σ33
σ23
σ13
σ12

0
BBBBBB@

1
CCCCCCA

¼ −2ax3

c11 þ c12−
2c12c12
c11

c11 þ c12−
2c12c12
c11

0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð25Þ

The stress in the silicon wafer is an equiaxed biaxial stress, as
would be expected from a plane stress in the film. Not a priori
8), doi:10.1016/j.tsf.2008.07.014
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Fig. 3. Distribution of stresses in the film and wafer. The stress gradient in the wafer is
caused by the simultaneous requirement of force and momentum equilibrium.
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expected, however, is the fact that the strain in the silicon wafer is
rotationally symmetric (Eq. (24)). This is a consequence of the
symmetry and orientation of the silicon crystal.

3.3. Equilibrium

The next step is to balance force and momentum of the film/
substrate combination on any cross section of the film/substrate
system [3]. The balance will yield the location of the neutral plane and
the curvature of the sample. From the fact that Eq. (25) contains only
σ11 and σ22, the solution is straightforward. The in-plane stress in the
silicon substrate, σ//, with respect to the neutral plane is now given by:

σ == x3ð Þ ¼ σ11 x3ð Þ ¼ σ22 x3ð Þ ¼ −2ax3 c11 þ c12−
2c12c12
c11

� �
: ð26Þ

Assume that the distance from the neutral plane to the film is αh
(see Fig. 2). This yields the integration limits for the force- and
momentum-balance.

Z αh

h α−1ð Þ
σ == x3ð Þdx3 þ σ f tf ¼ 0 ð27Þ

Z αh

h α−1ð Þ
x3σ== x3ð Þdx3 þ αhσ f tf ¼ 0: ð28Þ

Substitution of Eq. (26) and integration of Eqs. (27) and (28) yields:

ah2 1−2αð Þ c11 þ c12−
2c12c12
c11

� �
þ σ f tf ¼ 0 ð29Þ

−
2ah3

3
c11 þ c12−

2c12c12
c11

� �
3α2−3α þ 1
� �þ αhσ f tf ¼ 0: ð30Þ

Multiplying Eq. (29) by αh and subtracting it from Eq. (30) yields
α=2/3.
Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (200
In Fig. 3, a schematic representation of the stresses in film and
substrate is given. Inserting α=2/3 in Eq. (29) yields:

σ f tf ¼
1
3
ah2 c11 þ c12−

2c12c12
c11

� �
: ð31Þ

Substitution of Eq. (14) in Eq. (31) yields:

σ f tf ¼ c11 þ c12−
2c12c12
c11

� �
h2

6R
: ð32Þ

The stiffness constants cij can be expressed in terms of the
compliance constants sij [27],

c11 þ c12−2
c12c12
c11

¼ 1
s11 þ s12

: ð33Þ

With this substitution, Eq. (32) now reads:

σ f tf ¼
h2

6 s11 þ s12ð ÞR : ð3Þ

This is the Stoney equation for Si(001) wafers. The numerical value
for 1/ (s11+s12) is 1.803(1)×1011 Nm−2, based on the stiffness numbers
reported in Refs. [24] and [25].
4. The Stoney equation for a Si(111) wafer substrate

In the derivation of the Stoney equation for Si(001), we had the constitutive equation in the same coordinate frame as the deformation. For Si
(111) wafers, we have the deformation in the frame of the wafer and the constitutive equation in the frame of the crystal. Those two frames are
rotated with respect to each other.

In order to describe the elastic deformation of a Si(111) wafer due to the force per unit width exerted by a stressed film, we first transform the
constitutive equation to a rotated set of axes suitable for this problem. The unit vectors of this rotated set of axes are êi, i=1,2,3. The unit vectors ê1
and ê2 are perpendicular to each other and lie in the plane of the Si(111) wafer and ê3 is perpendicular to the Si(111) wafer. For the calculation of
the deformation of a Si(111) wafer, ê1 replaces x1 in Fig. 1 and ê2 replaces x2.

As new unit vectors, we choose:

ê1 ¼
1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p
0

0
@

1
A; ê2 ¼

1=
ffiffiffi
6

p
1=

ffiffiffi
6

p
−2=

ffiffiffi
6

p

0
@

1
A; ê3 ¼

1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

0
@

1
A: ð34Þ

All mutual dot products between these unit vectors are zero and the vector product of the first two yields the third, accounting for the right
handedness of the new unit vectors.

The transformation matrix, T, from the set of axes x to the set of axes x̂ is:

T ¼
1=

ffiffiffi
2

p
1=

ffiffiffi
6

p
1=

ffiffiffi
3

p
−1=

ffiffiffi
2

p
1=

ffiffiffi
6

p
1=

ffiffiffi
3

p
0 −2=

ffiffiffi
6

p
1=

ffiffiffi
3

p

0
@

1
A; ð35Þ

The inverse transformation is given by the transpose of T, Tt:

Tt ¼
1=

ffiffiffi
2

p
−1=

ffiffiffi
2

p
0

1=
ffiffiffi
6

p
1=

ffiffiffi
6

p
−2=

ffiffiffi
6

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

0
@

1
A: ð36Þ
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Now assume a stress tensor t̂tσ in the rotated coordinate system.With the use of Eq. (37), we can calculate the stress in the original coordinate
system:

ttσ ¼ T �t̂tσ � Tt :

We can now determine ε in the original coordinate system from Eq. (38) below, which is the inverse of Eq. (12).

e11
e22
e33
2e23
2e13
2e12

0
BBBBBB@

1
CCCCCCA

¼

s11 s12 s12
s12 s11 s12
s12 s12 s11

s44
s44

s44

0
BBBBBB@

1
CCCCCCA

σ11
σ22
σ33
σ23
σ13
σ12

0
BBBBBB@

1
CCCCCCA
; ð38Þ

with sij the compliance constants. For cubic crystals, the compliance constants can readily be expressed in terms of the stiffness constants [27]:

s11 ¼ c11 þ c12
c11−c12ð Þ c11 þ 2c12ð Þ ; s12 ¼ −c12

c11−c12ð Þ c11 þ 2c12ð Þ ; s44 ¼ 1
c44

: ð39Þ

Now, we obtain ε̂ from ε by applying the following transformation,

t̂te ¼ Tt �tte � T :
Knowing all components of the strain tensor,t̂te , for an assumed stress tensor,t̂tσ , allows us to express t̂te as a function of t̂tσ . This is done in the

constitutive Eq. (41) below.

ê11
ê22
ê33

2 ê23
2 ê13
2ê12

0
BBBBBB@

1
CCCCCCA

¼

s11
2

þ s12
2

þ s44
4

s11
6

þ 5s12
6

−
s44
12

s11
3

þ 2s12
3

−
s44
6

s11
ffiffiffi
2

p

3
−
s12

ffiffiffi
2

p

3
−
s44

ffiffiffi
2

p

6
0 0

s11
6

þ 5s12
6

−
s44
12

s11
2

þ s12
2

þ s44
4

s11
3

þ 2s12
3

−
s44
6

−
s11

ffiffiffi
2

p

3
þ s12

ffiffiffi
2

p

3
þ s44

ffiffiffi
2

p

6
0 0

s11
3

þ 2s12
3

−
s44
6

s11
3

þ 2s12
3

−
s44
6

s11
3

þ 2s12
3

þ s44
3

0 0 0

s11
ffiffiffi
2

p

3
−
s12

ffiffiffi
2

p

3
−
s44

ffiffiffi
2

p

6
−
s11

ffiffiffi
2

p

3
þ s12

ffiffiffi
2

p

3
þ s44

ffiffiffi
2

p

6
0

4s11
3

−
4s12
3

þ s44
3

0 0

0 0 0 0
4s11
3

−
4s12
3

þ s44
3

2s11
ffiffiffi
2

p

3
−
2s12

ffiffiffi
2

p

3
−
s44

ffiffiffi
2

p

3

0 0 0 0
2s11

ffiffiffi
2

p

3
−
2s12

ffiffiffi
2

p

3
−
s44

ffiffiffi
2

p

3
2s11
3

−
2s12
3

þ 2s44
3

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

σ̂11

σ̂22

σ̂33

σ̂23

σ̂13

σ̂12

0
BBBBBBBB@

1
CCCCCCCCA
:

ð41Þ
In order to calculate the curvature of a Si(111) wafer due to a stressed film, we employ Eq. (41) andmake use of the assumption that the neutral

plane of the wafer has the form:

û
0ð Þ
3 ¼ ax̂

2
1 þ ax̂

2
2: ð42Þ

From Eq. (42) we obtain:

ê11 ¼ ê22 ¼ −2ax̂3; ê12 ¼ 0: ð43Þ
From the free surface of the wafer with the moments being constant, we have:

σ̂13 ¼ σ̂23 ¼ σ̂33 ¼ 0: ð44Þ

Combining Eqs. (43), (44) with Eq. (41) yields all stresses and strains:

σ̂11
σ̂22
σ̂33
σ̂23
σ̂13
σ̂12

0
BBBBBB@

1
CCCCCCA

¼ −2ax̂3

6
4s11 þ 8s12 þ s44

6
4s11 þ 8s12 þ s44

0
0
0
0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð45Þ

ê11
ê22
ê33
ê23
ê13
ê12

0
BBBBBB@

1
CCCCCCA

¼ −2ax̂3

1
1

4s11 þ 8s12−2s44
4s11 þ 8s12 þ s44

0
0
0

0
BBBBBBB@

1
CCCCCCCA
: ð46Þ

Just as in the case of the Si(001) wafer, the stress in the siliconwafer is an equiaxed biaxial stress, as would be expected from a plane stress in
the film. Not a priori expected, however, is the fact that the strain in the silicon is rotationally symmetric (Eq. (46)). This, again, is a consequence of
the symmetry and orientation of the silicon crystal.

(40)
Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (2008), doi:10.1016/j.tsf.2008.07.014
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Now, working through the formulas as for Si(001), we find:

σ f tf ¼
6

4s11 þ 8s12 þ s44

� �
h2

6R
: ð5Þ

This is the Stoney equation for Si(111) wafers. The numerical value of 6/(4s11+8s12+s44)=2.291(1)×1011 Nm−2, based on the stiffness constants
reported in Refs. [24] and [25].

In this section, we derived an analytical solution for Si(111) wafers. It should be emphasized however, that this was only possible due to the very
special structure of the constitutive equation as shown in Eq. (41). In the solution the only non-zero stress components are σ11 and σ22. Eq. (41)
demonstrates that the effect ofσ11 andσ22 on components ε11 and ε22 exhibits symmetry, that is the 11 and 22 components of thematrix are identical.
5. Experimental results

In order to discuss the validity of the Stoney equation for the
deformation of silicon wafers we need to look at radial symmetry and
at the shape of the radial deformation. Is the shape purely quadratic,
see Eqs. (13a) and (13b), or does the deformed shape contain higher
order terms?

From previous work [29], we know that the deformation of
100 mm diameter Si(001) wafers due to a film under stress is not
completely radially uniform. We now present two series of measure-
ments of the direction dependent curvature for three film thicknesses,
one series on 100 mm diameter Si(001) and one series on 100 mm
diameter Si(111) wafers. Moreover, we used a sample reported on
previously [29] to check the radial shape of the deformation in order
to confirm the validity of the assumed deformation mode in Eqs. (13a)
and (13b).

We deposited two series of W films on Si(001) and Si(111)
wafers for 30 min, 1 hour and 2 hours in an AJA magnetron
sputter deposition system. The target diameter was 5.1 cm and
target power was 148 W, resulting in a target voltage of
approximately 400 V. The target to substrate distance was
11 cm. The argon pressure was kept at 0.20 Pa. The substrate
was rotated at 10 rpm in order to obtain an in-plane isotropic film.
The resulting growth rate was 3 nm/min. The thicknesses of the
films deposited on Si(001) wafers were 89, 178 , and 355 nm. The
thicknesses on Si(111) were 88, 179, and 358 nm. The thicknesses
were determined from weighing the wafers before and after
deposition and assuming bulk film density. The curvature of the
wafers was measured before and after deposition by reflecting
two parallel laser beams, 40 mm apart, off the wafer and
recording the distance between the two beams on a distant
screen [30]. The plane through the laser beams intersects the
plane of the wafer at a 90 degrees angle. We record the curvature
as a function of the angle α between this intersection line and the
optical flat (see Fig. 4). We start with the intersection line parallel
to the flat, α=0°, and measured at 15° intervals from 0° to 360°. At
angles greater than 180°, the two laser beams are interchanged,
Fig. 4. Definition of the angle α between line through the laser spots and the flat of the
wafer.

Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (200
yielding an internal check on the accuracy of the measurement. The
angle dependent curvature of all six samples can be fitted with:

1=Rf =s−1=Rs ¼ C1 þ C2sin 4π
α−C3

360

� �� �
; ð47Þ

with 1/Rf/s the curvature of the film/substrate sample and 1/Rs the
curvature of the substrate prior to deposition of the film. C1 is the
average curvature, C2 the amplitude of the perturbation on the average
curvature, and C3 gives the phase of the perturbationwith respect to the
[11
_
0] direction. In Fig. 5 an example of this angle dependent curvature is

presented for a 358 nm-thick tungsten film on a Si(111) wafer. The angle
dependent curvature is given for all six samples in Table 3.

In column 5 of Table 3, it can be seen that for Si(001) wafers the
deviation from a radially symmetric deformation is largest, 4.7%, at
small curvatures and decreases rapidly for larger curvatures. For Si
(111) wafers, the deviation from radially symmetric deformation is of
the order of 2–3% and independent of curvature.

In a previous publication [29], we reported on the deviation from
cylindrical deformation symmetry of the shape of a Si(001) wafer
covered with a 230 nm-thick W film. We now also report on the
uniqueness of the curvature along line scans through the center of the
wafer, obtained with a WYKO optical profiler. We made line scans
through the centerof thewafer in the stiff directions [1

_
10] and [110], and

along the crystal axes [100] and [010]. The line scan in the [1
_
10] direction

is shown in Fig. 6. After correcting for tilt, the curves were fitted to a
quadratic expression. Fig. 7 shows the residuals of the quadraticfit to the
data presented in Fig. 6. The residuals of the four fits are small compared
to thedeformationanddonot contain a symmetric component. Thus the
assumption of a quadratic deformation is justified.

In Fig. 8, the curvature C1 as a function of thickness is presented for
the Si(001) wafers (dots) and Si(111) wafers (squares). The lines are
Fig. 5. Angle dependent curvature of a Si(111) wafer covered with a 358-nm-thick
tungsten film. For the definition of α, see Fig. 4. The subscripts f/s and s refer to film/
substrate and substrate, respectively.
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Fig. 7. Residuals of the quadratic fit to the shape of the Si(001) wafer, depicted in Fig. 6.

Table 3
Sample parameters, including Si substrate orientation and W film thickness for all six
angle-dependent curvature measurements

Si wafer
orientation

W film
thickness (nm)

C1
(m−1)

C2
(m−1)

∣C2/C1∣ C3
(°)

Rc

001 89 −0.03909 0.001751 0.0479 11.7 0.982
001 178 −0.08138 0.000709 0.0087 42.8 0.857
001 355 −0.17057 0.000879 0.0051 51.6 0.823
111 88 −0.02905 0.000933 0.0321 47.7 0.949
111 179 −0.06327 0.001314 0.0208 64.2 0.991
111 358 −0.12294 0.003462 0.0282 40.7 0.997

C1 and C2 are fitting parameters, with units of m−1, in Eq. (47). The ratio |C2/C1|
represents relative size of the deviation from a cylindrical deformation. C3 is a fitting
parameter with units of degrees. It signifies the orientation of the deviationwith respect
to the [011] direction. Rc is the linear correlation coefficient, a measure for the quality of
the fit.
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linear fits through the origin. It can be seen that the magnitude of the
curvature increases linearly with film thickness. This is interpreted as a
thickness-independent stress in the film. It can also seen that for the
sameW film thickness, the Si(001) wafers exhibit more curvature than
the Si(111) wafers. In principle the ratio of the slopes of the two straight
lines yields the ratio of thebiaxialmoduli of the substrates. However, not
all wafers have exactly the same thickness and on average the (111)
wafers are a few percent thicker than the (001) wafers; therefore, we
calculated the ratio of the biaxial moduli, M111/M001, per pair of
measurements. We corrected the measured curvature of the Si(001)
wafers by the thickness ratio of the W films on Si(001) and Si(111). The
result for the three film thicknesses is:M111/M001=1.30±0.05

6. Discussion

The first point to be discussed is the amazing result that (001) and
(111) silicon single crystal substrates, with an elastic anisotropy of 30%
[21,22], deform radially symmetric, within a few percent under the
action of afilm inplane stress. This is due to the formof the strain tensors
given in Eqs. (24) and (46). The tensors are a result of the symmetry in
the constitutive equations, Eqs. (12) and (41). It is because of this
symmetry that it is possible to define a biaxial modulus Mhkl for Si(001)
and Si(111) wafers, see Eqs. (4) and (6). For silicon wafers with a less
symmetric orientation, e.g. Si(011)wafers, a film inplane stress does not
induce a rotationally symmetric strain in the silicon, and the resulting
deformation will not be rotationally symmetric [2].

The biaxial modulus of Si(001) is M001=1.803(1) GPa. The biaxial
modulus of Si(111) is M111=2.291(1) GPa. The ratio of these moduli is
1.27. In the section on experimental results, we determined the
Fig. 6. Shape of a Si(001) wafer covered with a 230-nm-thick tungsten film, measured in
the [1 ̄10] direction.

Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (200
curvature of Si(001)- and Si(111)-wafers due to the same force per unit
width. The ratio of these curvatures is 1.30±0.05 agreeing with the
ratio of the biaxial moduli within the experimental accuracy.

From Figs. 6 and 7, it is clear that the shape of the deformed wafer is
indeed quadratic, as assumed in Eqs. (13a) and (13b). The 230nm thickW
film induces a force per unit width of 0.77 GPa µm, leading to a curvature
of −0.093 m−1. According to finite elements calculations a force per unit
width up to 1.9 GPa µmwill yield a quadratic deformation [16].

An unresolved point remains the deviation from a radially
symmetric curvature. This deviation is on the order of a few percent.
For Si(001), the relative deviation (∣C2/C1∣) decreases with increasing
curvature; for Si(111) wafers, the relative deviation seems constant.
Also, the orientation of this deviation, C3, is not understood. At
present, we assume that the deviation from a radially symmetric
deformation is due to the non perfect radial symmetry of the problem,
caused by the flat of the Si-wafer.

7. Conclusions

Forms of the Stoney equation for Si (001) and (111) wafers have
been derived, Eqs. (3) and (5), respectively. These forms remove the
problem of having to assign values for E and ν to an elastically
anisotropic material and should therefore be used instead of Eq. (2)
in wafer curvature measurements for describing film stress on Si
(001) and Si(111) wafers. The validity of Eqs. (3) and (5) is
demonstrated by the fact that the measured ratio in curvature
Fig. 8. Curvature, C1, as function of tungsten film thickness for all samples from Table 3.
Dots depict the Si(001) wafer data, squares represent Si(111) wafer data.
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between Si(001) and Si(111) substrates covered by identical films is
equal to the calculated ratio of biaxial moduli of Si(001) and Si(111)
wafers.
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Appendix A. Reduction of the Stoney Equation for Si(001) and
Si(111) substrates to the “isotropic” Stoney Equation

The anisotropy ratio AR for a cubic material indicates the degree of
departure from elastic isotropy [27]. This ratio is defined as:

AR ¼ 2c44
c11−c12

; or AR ¼ 2 s11−s12
� �

s44
: ðA1Þ

For silicon, the anisotropy ratio is 1.57. For elastically isotropic
crystals, AR=1, and E and ν have a well defined meaning independent
of direction:

E ¼ 1
s11

; and � ¼ −
s12
s11

: ðA2Þ

Substitution of Eq. (A2) in Eq. (3) yields Eq. (2). To arrive at Eq. (2)
starting from Eq. (5) one has also to use the relation AR=1.

Appendix B. Clamped substrate

The stress in the film, σf in Eq. (3), is the value for the curved state
of the substrate. A typical deposition procedure is to deposit the film
on a clamped substrate, which is allowed to bend after the deposition.
In this Appendix it is demonstrated that by this bending only a very
small fraction of the stress in the film is relieved. If the film is
deposited on a clamped substrate in a stressed state, σi, then the
relation between those two stresses is:

σ i ¼ σ f þ Δσ f ðB1Þ

with

Δσ f ¼
2hEf

3R 1−�f
� � : ðB2Þ
Please cite this article as: G.C.A.M. Janssen, et al., Thin Solid Films (200
Combining Eqs. (B2) and (3) we see the magnitude of the
correction:

Δσ f

σ f
¼ 4

Ef s11 þ s12ð Þ
1−�f
� � tf

h
ðB3Þ

Since the thickness of the film is typically a few orders of
magnitude smaller than the thickness of the substrate, and the
stiffness of the film is never an order of magnitude larger than the
stiffness of the substrate, the correction is typically less than 1%.
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